Qual a Escala de Um Vôo Digital?

O constante desenvolvimento dos sistemas aerotransportados trouxe ao mercado os modernos sensores para captação de imagens digitais. Junto com as novas tecnologias surgem também duvidas sobre o uso de certos conceitos, como por exemplo, a escala de um vôo digital.

Escala tem por definição a relação entre um objeto no mundo real e a sua representação em um formato impresso.

Para um vôo realizado com filme a definição da escala das fotografias é realizada através da relação entre a distância focal da câmara utilizada e a altura de vôo utilizada para a captação das imagens. Um conjunto de fotografias aéreas apresenta uma escala média, pois a altura do vôo não é constante, ela varia de acordo com a ondulação do terreno. A variação de relevo do terreno deve ser considerada durante o planejamento do vôo para que não ocorram variações acima da ordem de 5 a 10% da escala planejada. (Figura 01)

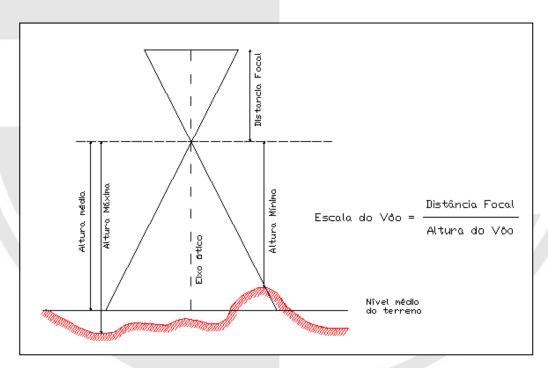


Figura 01: Escala de um vôo convencional com filme.

A resolução do filme utilizado, ou seja, a qualidade da emulsão fotográfica utilizada, com capacidade para gravar distintamente pormenores finos e o contraste com que o filme reproduz pequenos detalhes também interferem na qualidade da imagem registrada. A qualidade e a escala das imagens são fatores limitantes para a precisão desejada para o produto final.

A associação dos conceitos acima citados não pode ser aplicada aos vôos fotogramétricos digitais. O conceito de escala não pode mais ser utilizado. Para a captação direta de imagens digitais usamos o conceito de GSD (*Ground Sample Distance*). O GSD representa o tamanho real, em unidades do terreno, que um determinado *pixel* representa em função da resolução de uma imagem.

Pixel, oriundo do termo em inglês *picture element*, é a menor unidade de uma imagem digital e define a sua resolução. Uma imagem digital pode ser considerada como sendo uma matriz cujos

índices de linha e colunas identificam um ponto na imagem, e o correspondente valor do elemento da matriz identifica o nível de cinza naquele ponto. Os elementos desta matriz são chamados de elementos de imagem ou *pixels*.

Nos *pixels* são armazenados valores que irão formar a imagem. Em cada *pixel* da imagem é armazenado um valor ponderado de toda a energia refletida correspondente a sua área no terreno, de acordo com o GSD utilizado. Para um GSD de 10 cm esta área no terreno terá um único valor armazenado em um *pixel*. Quanto menor for o GSD, maior será a resolução da imagem, ou seja, melhor será a definição dos objetos. Na figura 02 é mostrada uma imagem com GSD de 0,10m onde percebe-se que os pequenos detalhes são bem nítidos. A medida que o tamanho de GSD aumenta ocorre a simplificação dos detalhes, figuras 03 a 05. A identificação dos elementos fica mais difícil na imagem 06 que apresenta um GSD de 2 m. O valor do GSD a ser utilizado em um determinado vôo deve ser calculado em função dos produtos finais desejados.

Figura 02: GSD 0,10 m

Figura 03: GSD 0,20 m

Figura 04 : GSD 0,50 m

Figura 05 : GSD 1 m

Figura 06: GSD 2 m

A tabela a seguir (Figura 07) mostra o GSD recomendado para a câmara digital ADS40 para as diversas escalas de mapeamento e uma comparação com os vôos convencionais de filme.

Average GSD	Map Scale	Map standard		Comparable film photographs	
with ADS40		x-y accuracy RMSE	contour interval	photo scale	pixel size on ground of scanned film
5 - 10 cm	1:500	0.125 m	0.25 m	1:3,000 to 1:5,500	2.5 - 5 cm
10 - 15 cm	1:1000	0.25 m	0.5 m	1 : 5,000 to 1 : 8,000	5 - 7.5 cm
15 - 20 cm	1:1,500	0.4 m	0.75 m	1:6,500 to 1:10,000	7.5 - 10 cm
20 - 30 cm	1:2,000	0.5 m	1 m	1:8,000 to 1:11,000	10 - 15 cm
25 - 35 cm	1:2,500	0.60 m	1.25 m	1:8,500 to 1:13,000	12.5 - 17.5 cm
30 - 50 cm	1:5,000	1.25 m	2.5 m	1:12,000 to 1:18,000	15 - 25 cm
40 - 60 cm	1:10,000	2.50 m	5 m	1:17,000 to 1:27,000	20 - 30 cm
50 - 70 cm	1:20,000	5 m	10 m	1:25,000 to 1:35,000	25 - 35 cm
50 - 80 cm	1:25,000	6.25 m	12.5 m	1:28,000 to 1:42,000	25 - 40 cm
50 - 100 cm	1:50,000	12.5 m	20 m	1:40,000 to 1:60,000	25 - 50 cm
50 - 100 cm	1:100,000	25 m	50 m	1:60,000 to 1:90,000	25 - 50 cm

Figura 07: Parâmetros para planejamento de Vôo. Fonte: Leica

O GSD é diretamente relacionado com a altura da aeronave em relação ao solo, da distância focal da câmara utilizada e do tamanho físico do *pixel* no CCD. (Figura 08)

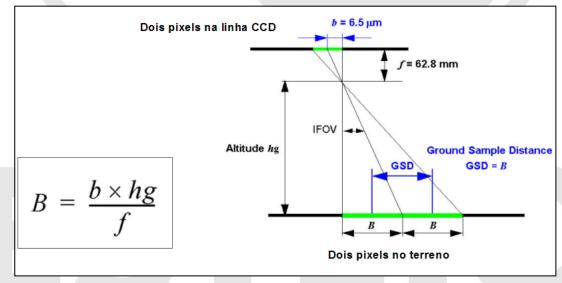


Figura 08: Cálculo do GSD. Fonte: Leica

O termo "escala da foto" não pode ser utilizado para caracterizar a qualidade das imagens adquiridas de forma digital direta, ou seja, com as câmaras digitais. Este é um conceito apenas para as imagens de filme. O exemplo a seguir (Figura 09) mostra duas câmaras digitais com características diferentes, gerando imagens com a mesma resolução, mas com o cálculo de "escala da foto" totalmente diferente.

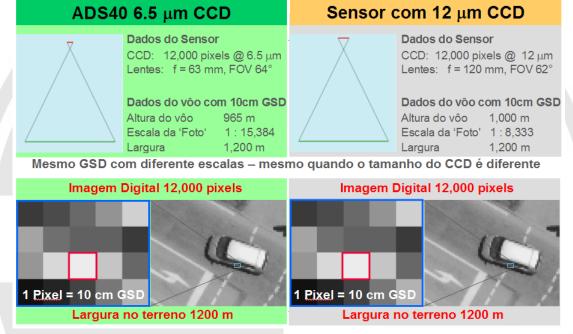


Figura 09: Comparação de diferentes "escalas de foto". Fonte: Leica

Apesar da "escala" calculada apresentar uma grande diferença, o GSD das imagens é o mesmo, portanto imagens com a mesma qualidade. Isto reforça o fato que calcular a escala para um vôo digital é um erro para indicar a sua qualidade para os produtos a serem gerados.

Outro fator importante, que mostra um ganho de qualidade das imagens digitais, é a retirada de fatores como deformações do filmes, problemas no processo de revelação, interferências mecânicas e óticas dos *scaneres* no processo de rasterização do filme.

Angela Kugler - Engenheira Cartógrafa, com especialização em Geoprocessamento e em Informática, responsável pelo processamentos com dados de Câmara Digital, Aerotriangulação e Geoprocessamento da empresa ESTEIO Engenharia e Aerolevantamentos S.A.

ESTEIO